Note

On the Calculation of Rotation Matrices

The matrix elements $d_{k, m}^{j} \equiv d^{j}(\pi / 2)_{k, m}$ play an essential role in the construction of symmetry-adapted functions for the octahedral group (1). In a recent paper, Fox and Krohn (2) perform the evaluation of these elements by a recursion formula in which j and one of the subscripts are fixed. In the present note we propose an improved recursion relation to facilitate computation of the $d_{k, m}^{j}$ matrix elements. As this relation involves only integers, we eliminate cumulative roundoff errors (implicit in the method of Ref. (2)) arising from the introduction of a new irrational number with each recursive step.

Wigner's formula for the $d_{k, m}^{j}$ matrix elements (3) can be written, using combinational numbers, as

$$
\begin{equation*}
d_{k, m}^{j}=\frac{(-1)^{k-m}}{2^{j}} \frac{\binom{2 j}{j+m}^{1 / 2}}{\binom{2 j}{j+k}^{1 / 2}} \sum_{v}(-1)^{\nu}\binom{j+m}{\nu}\binom{j-m}{j-k-v} \tag{1}
\end{equation*}
$$

We now introduce the quantities $\omega^{j}(k, m)$ defined by

$$
\begin{equation*}
\omega^{j}(k, m)=(-1)^{k-m} \sum_{\nu}(-1)^{v}\binom{j+m}{\nu}\binom{j-m}{j-k-v} \tag{2}
\end{equation*}
$$

where ν takes those values for which the factorial terms in the binomial coefficients are positive.

Using the particular value of Eq. (2),

$$
\begin{equation*}
\omega^{j}(k, m)=\binom{2 j}{j+k} \quad \text { for } \quad m=j \tag{3}
\end{equation*}
$$

Eq. (1) can be written in the more convenient form:

$$
\begin{equation*}
d_{k, m}^{j}=\frac{1}{2^{j}} \frac{\left\{\omega^{j}(m, j)\right\}^{1 / 2}}{\left\{\omega^{j}(k, j)\right\}^{1 / 2}} \omega^{j}(k, m) \tag{4}
\end{equation*}
$$

Applying the known symmetry relation $d_{k, m}^{j}=(-1)^{k-m} d_{m, k}^{j}$ to the preceding equation, we immediately obtain

$$
\begin{equation*}
\omega^{j}(k, m) \omega^{j}(m, j)=(-1)^{k-m} \omega^{j}(m, k) \omega^{j}(k, j) \tag{5}
\end{equation*}
$$

Therefore, we can transform Eq. (2) into

$$
\begin{equation*}
d_{k, m}^{j}=\frac{1}{2^{j}}\left|\omega^{j}(k, m) \omega^{j}(m, k)\right|^{1 / 2} \operatorname{sign}\left\{\omega^{j}(k, m)\right\} \tag{6}
\end{equation*}
$$

where the bars indicate absolute value.
In an actual computation of the set of all independent $d_{k, m}^{j}$'s with the same j, Eq. (4) is more convenient than Eq. (6) since we need only calculate l (or $j-\frac{1}{2}$) square roots. If Eq. (6) were used, we would need $l(l+1) / 2$ (or $\left\{j^{2}-\frac{1}{4}\right\} / 2$) square roots. On the other hand, when we want to test and check computational results, Eq. (6) appears easy to handle.

In order to obtain recursion relations between the $\omega^{j}(k, m)$ quantities, we define a generating functional of these matrix elements:

$$
\begin{equation*}
\sum_{k=-j}^{j} \omega^{j}(k, m) t^{j-k}=(t-1)^{j-m}(t+1)^{j+m} \tag{7}
\end{equation*}
$$

Writing this equation for m and $m+1$, we directly obtain the simple recursion formula

$$
\begin{equation*}
\omega^{j}(k+1, m+1)=\omega^{j}(k, m)+\omega^{j}(k+1, m)+\omega^{j}(k, m+1) \tag{8}
\end{equation*}
$$

The starting value given by Eq. (3), together with

$$
\begin{equation*}
\omega^{j}(j, m)=(-1)^{i-m} \quad \text { for } \quad k=j \tag{9}
\end{equation*}
$$

can be used to perform the iteration of the $\omega^{j}(k, m)$ through Eq. (8).
Using Eqs. (3), (4), (8), and (9) we are able to compute all quantities $\omega^{j}(k, m)$ for $0 \leqslant k, m \leqslant j$. The remaining values can be calculated from the symmetry relations

$$
\begin{align*}
\omega^{j}(k, m) & =(-1)^{j-k} \omega^{j}(k,-m) \\
& =(-1)^{j-m} \omega^{j}(-k, m), \tag{10}
\end{align*}
$$

obtained by putting $\nu=j \pm k-\mu$ in Eq. (2).
When j can only take on integral values, quite convenient starting values can be obtained by writing Eq. (7) in the form

$$
\begin{equation*}
\sum_{k=-l}^{l} \omega^{l}(k, 0) t^{l-k}=\left(t^{2}-1\right)^{l} \tag{11}
\end{equation*}
$$

Comparing terms of the same order in t, we have

$$
\begin{array}{ll}
\omega^{l}(k, 0)=0 & \text { for } l+k \text { odd } \\
\omega^{l}(k, 0)=(-1)^{(l+k) / 2}\binom{l}{l+k) / 2} & \text { for } l+k \text { even. } \tag{13}
\end{array}
$$

Calculations of the $d_{k, m}^{l}$ matrix elements have been implemented using Eqs. (4), (8), (9), (12), (13), and the symmetry relation $d_{m, k}^{l}=(-1)^{m-k} d_{k, m}^{l}$, in Fortran IV language in an IBM 370/145.

All computed values of $d_{k, m}^{l}$ for $0 \leqslant l \leqslant 56$ using double-precision arithmetic are obtained in 9 sec . They show a maximum orthogonality error equal to 280×2^{-56}, i.e., they are obtained with 16 significant figures. The accuracy decreases for $l>56$, as might be expected due to the computer precision.

References

1. S. L. Altman, Proc. Cambridge Phil. Soc. 53 (1957), 343.
2. K. Fox and B. J. Krohn, J. Computational Physics 25 (1977), 386.
3. M. E. Rose, "Elementary Theory of Angular Momentum," Appendix II, Wiley, New York, 1957.

Received: August 22, 1978; revised: March 20, 1979.
A. O. Caride
S. I. Zanette

Centro Brasileiro de Pesquisas Físicas
Rio de Janeiro, Brazil 22290

